293
Small RNAs – The Big Players in Developing Salt-Resistant Plants
Khare, T., Shriram, V., & Kumar, V., (2018). RNAi technology: The role in development
of abiotic stress-tolerant crops. In: Wani, S. H., (ed.), Biochemical, Physiological and
Molecular Avenues for Combating Abiotic Stress Tolerance in Plants (pp. 117–133).
Academic Press. https://doi.org/10.1016/B978-0-12-813066-7.00008-5.
Khraiwesh, B., Zhu, J. K., & Zhu, J., (2012). Role of miRNAs and siRNAs in biotic and
abiotic stress responses of plants. Biochimica et Biophysica Acta (BBA)-Gene Regulatory
Mechanisms, 1819(2), 137–148. https://doi.org/10.1016/j.bbagrm.2011.05.001.
Kim, S. K., Nam, J. W., Rhee, J. K., Lee, W. J., & Zhang, B. T., (2006). miTarget: MicroRNA
target gene prediction using a support vector machine. BMC Bioinformatics, 7(1), 1–12.
https://doi.org/10.1186/1471-2105-7-411.
Kim, V. N., (2005). MicroRNA biogenesis: Coordinated cropping and dicing. Nature Reviews
Molecular Cell Biology, 6(5), 376–385. https://doi.org/10.1038/nrm1644.
Kim, V. N., (2005). Small RNAs: Classification, biogenesis, and function. Molecules & Cells,
19(1), 1–15.
Kim, V. N., Han, J., & Siomi, M. C., (2009). Biogenesis of small RNAs in animals. Nature
Reviews Molecular Cell Biology, 10(2), 126–139. https://doi.org/10.1038/nrm2632.
Kinoshita, T., & Seki, M., (2014). Epigenetic memory for stress response and adaptation in
plants. Plant and Cell Physiology, 55(11), 1859–1863. https://doi.org/10.1093/pcp/pcu125.
Kong, Y., Elling, A. A., Chen, B., & Deng, X., (2010). Differential expression of microRNAs
in maize inbred and hybrid lines during salt and drought stress. American Journal of Plant
Sciences, 1(02), 69. https://doi.org/10.4236/ajps.2010.12009.
Kooter, J. M., Matzke, M. A., & Meyer, P., (1999). Listening to the silent genes: Transgene
silencing, gene regulation and pathogen control. Trends in Plant Science, 4(9), 340–347.
https://doi.org/10.1016/S1360-1385(99)01467-3.
Koroban, N., Kudryavtseva, A., Krasnov, G., Sadritdinova, A., Fedorova, M., Snezhkina, A.,
Bolsheva, N., et al., (2016). The role of microRNA in abiotic stress response in plants.
Molecular Biology, 50(3), 337–343. https://doi.org/10.1134/S0026893316020102.
Ku, Y. S., Wong, J. W. H., Mui, Z., Liu, X., Hui, J. H. L., Chan, T. F., & Lam, H. M.,
(2015). Small RNAs in plant responses to abiotic stresses: Regulatory roles and study
methods. International Journal of Molecular Sciences, 16(10), 24532–24554. https://doi.
org/10.3390/ijms161024532.
Kumar, R., (2014). Role of microRNAs in biotic and abiotic stress responses in crop plants.
Applied Biochemistry and Biotechnology, 174(1), 93–115. https://doi.org/10.1007/
s12010-014-0914-2.
Kumar, V., Khare, T., Shriram, V., & Wani, S. H., (2018). Plant small RNAs: The essential
epigenetic regulators of gene expression for salt-stress responses and tolerance. Plant Cell
Reports, 37(1), 61–75. https://doi.org/10.1007/s00299-017-2210-4.
Kurihara, Y., & Watanabe, Y., (2004). Arabidopsis micro-RNA biogenesis through dicer-like
1 protein functions. Proceedings of the National Academy of Sciences, 101(34), 12753–
12758. https://doi.org/10.1073/pnas.0403115101.
Kurihara, Y., Takashi, Y., & Watanabe, Y., (2006). The interaction between DCL1 and HYL1 is
important for efficient and precise processing of pri-miRNA in plant microRNA biogenesis.
RNA, 12(2), 206–212. https://doi.org/10.1261/rna.2146906.
Ladunga, I., (2007). More complete gene silencing by fewer siRNAs: Transparent optimized
design and biophysical signature. Nucleic Acids Research, 35(2), 433–440. https://doi.
org/10.1093/nar/gkl1065.