293

Small RNAs – The Big Players in Developing Salt-Resistant Plants

Khare, T., Shriram, V., & Kumar, V., (2018). RNAi technology: The role in development

of abiotic stress-tolerant crops. In: Wani, S. H., (ed.), Biochemical, Physiological and

Molecular Avenues for Combating Abiotic Stress Tolerance in Plants (pp. 117–133).

Academic Press. https://doi.org/10.1016/B978-0-12-813066-7.00008-5.

Khraiwesh, B., Zhu, J. K., & Zhu, J., (2012). Role of miRNAs and siRNAs in biotic and

abiotic stress responses of plants. Biochimica et Biophysica Acta (BBA)-Gene Regulatory

Mechanisms, 1819(2), 137–148. https://doi.org/10.1016/j.bbagrm.2011.05.001.

Kim, S. K., Nam, J. W., Rhee, J. K., Lee, W. J., & Zhang, B. T., (2006). miTarget: MicroRNA

target gene prediction using a support vector machine. BMC Bioinformatics, 7(1), 1–12.

https://doi.org/10.1186/1471-2105-7-411.

Kim, V. N., (2005). MicroRNA biogenesis: Coordinated cropping and dicing. Nature Reviews

Molecular Cell Biology, 6(5), 376–385. https://doi.org/10.1038/nrm1644.

Kim, V. N., (2005). Small RNAs: Classification, biogenesis, and function. Molecules & Cells,

19(1), 1–15.

Kim, V. N., Han, J., & Siomi, M. C., (2009). Biogenesis of small RNAs in animals. Nature

Reviews Molecular Cell Biology, 10(2), 126–139. https://doi.org/10.1038/nrm2632.

Kinoshita, T., & Seki, M., (2014). Epigenetic memory for stress response and adaptation in

plants. Plant and Cell Physiology, 55(11), 1859–1863. https://doi.org/10.1093/pcp/pcu125.

Kong, Y., Elling, A. A., Chen, B., & Deng, X., (2010). Differential expression of microRNAs

in maize inbred and hybrid lines during salt and drought stress. American Journal of Plant

Sciences, 1(02), 69. https://doi.org/10.4236/ajps.2010.12009.

Kooter, J. M., Matzke, M. A., & Meyer, P., (1999). Listening to the silent genes: Transgene

silencing, gene regulation and pathogen control. Trends in Plant Science, 4(9), 340–347.

https://doi.org/10.1016/S1360-1385(99)01467-3.

Koroban, N., Kudryavtseva, A., Krasnov, G., Sadritdinova, A., Fedorova, M., Snezhkina, A.,

Bolsheva, N., et al., (2016). The role of microRNA in abiotic stress response in plants.

Molecular Biology, 50(3), 337–343. https://doi.org/10.1134/S0026893316020102.

Ku, Y. S., Wong, J. W. H., Mui, Z., Liu, X., Hui, J. H. L., Chan, T. F., & Lam, H. M.,

(2015). Small RNAs in plant responses to abiotic stresses: Regulatory roles and study

methods. International Journal of Molecular Sciences, 16(10), 24532–24554. https://doi.

org/10.3390/ijms161024532.

Kumar, R., (2014). Role of microRNAs in biotic and abiotic stress responses in crop plants.

Applied Biochemistry and Biotechnology, 174(1), 93–115. https://doi.org/10.1007/

s12010-014-0914-2.

Kumar, V., Khare, T., Shriram, V., & Wani, S. H., (2018). Plant small RNAs: The essential

epigenetic regulators of gene expression for salt-stress responses and tolerance. Plant Cell

Reports, 37(1), 61–75. https://doi.org/10.1007/s00299-017-2210-4.

Kurihara, Y., & Watanabe, Y., (2004). Arabidopsis micro-RNA biogenesis through dicer-like

1 protein functions. Proceedings of the National Academy of Sciences, 101(34), 12753–

12758. https://doi.org/10.1073/pnas.0403115101.

Kurihara, Y., Takashi, Y., & Watanabe, Y., (2006). The interaction between DCL1 and HYL1 is

important for efficient and precise processing of pri-miRNA in plant microRNA biogenesis.

RNA, 12(2), 206–212. https://doi.org/10.1261/rna.2146906.

Ladunga, I., (2007). More complete gene silencing by fewer siRNAs: Transparent optimized

design and biophysical signature. Nucleic Acids Research, 35(2), 433–440. https://doi.

org/10.1093/nar/gkl1065.